Nested coalescents

Airam Blancas Benítez Joint work with: Amaury Lambert and Arno Siri-Jégousse

CIMAT

May 16, 2016

★ロト★御と★注と★注と、注

1/19

Outline

- Motivation and definition
- Characterization
- Examples

Species trees

Motivation and definition

Species trees and Gene trees

Genes trees

Genes trees

Species trees

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
9/19

We are interested in coagulating processes with values in $\mathcal{N}_n \coloneqq$ the subset of **nested** partitions $\pi = (\pi^s, \pi^g)$ of $[n]^2$.

Definition

Fix $n \in \overline{\mathbb{N}}$, for every $t \ge 0$ let $\mathcal{R}(t) := ((\mathcal{R}^{s}(t), \mathcal{R}^{g}(t)) : t \ge 0)$ be a Markov process with values in \mathcal{N}_{n} . This process is called **simple nested exchangeable coalescent**, snec for short, if

i) For any $t \ge 0$, $\mathcal{R}^{g}(t)$ and $\mathcal{R}^{s}(t)$ are exchangeable random partitions.

Definition

Fix $n \in \overline{\mathbb{N}}$, for every $t \ge 0$ let $\mathcal{R}(t) := ((\mathcal{R}^{s}(t), \mathcal{R}^{g}(t)) : t \ge 0)$ be a Markov process with values in \mathcal{N}_{n} . This process is called **simple nested exchangeable coalescent**, snec for short, if

- i) For any $t \ge 0$, $\mathcal{R}^{g}(t)$ and $\mathcal{R}^{s}(t)$ are exchangeable random partitions.
- ii) The process $(\mathcal{R}^{s}(t): t \ge 0)$ is a simple exchangeable coalescent process.

Definition

Fix $n \in \overline{\mathbb{N}}$, for every $t \ge 0$ let $\mathcal{R}(t) := ((\mathcal{R}^{s}(t), \mathcal{R}^{g}(t)) : t \ge 0)$ be a Markov process with values in \mathcal{N}_{n} . This process is called **simple nested exchangeable coalescent**, snec for short, if

- i) For any $t \ge 0$, $\mathcal{R}^{g}(t)$ and $\mathcal{R}^{s}(t)$ are exchangeable random partitions.
- ii) The process $(\mathcal{R}^{s}(t): t \ge 0)$ is a simple exchangeable coalescent process.
- iii) Conditional on $(\mathcal{R}^{s}(t): t \ge 0)$, the process $(\mathcal{R}^{g}(t): t \ge 0)$ restricted to a single species is a simple exchangeable coalescent process.

Outline

Simple nested exchangeable coalescent

• Motivation and definition

Characterization

• Examples

Characterization of simple exchangeable coalescents

There exists an array of numbers $(\lambda_{b,k})_{2 \le k \le b}$ which gives us the rate at which any fixed *k*-tuple of blocks merges when there are *b*-blocks in total such that

 $\lambda_{b,k} = \lambda_{b+1,k} + \lambda_{b+1,k+1}.$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへの

12/19

Characterization of simple exchangeable coalescents

There exists an array of numbers $(\lambda_{b,k})_{2 \le k \le b}$ which gives us the rate at which any fixed *k*-tuple of blocks merges when there are *b*-blocks in total such that

 $\lambda_{b,k} = \lambda_{b+1,k} + \lambda_{b+1,k+1}.$

Characterization of simple exchangeable coalescents

There exists an array of numbers $(\lambda_{b,k})_{2 \le k \le b}$ which gives us the rate at which any fixed *k*-tuple of blocks merges when there are *b*-blocks in total such that

 $\lambda_{b,k} = \lambda_{b+1,k} + \lambda_{b+1,k+1}.$

Characterization of snec

- Denote $\mathbf{g} = (g_1, ..., g_s)$ and $\mathbf{c} = (c_1, ..., c_k)$.
- Let $q(\mathbf{g}, \mathbf{c})$ be the rate at which a *k*-tuple of those *s* species merge into one, involving c_i genes in the *i*-th species merging.

Characterization of snec

- Denote $\mathbf{g} = (g_1, \dots, g_s)$ and $\mathbf{c} = (c_1, \dots, c_k)$.
- Let $q(\mathbf{g}, \mathbf{c})$ be the rate at which a *k*-tuple of those *s* species merge into one, involving c_i genes in the *i*-th species merging.

The jump rate when at least two species merge is given by

$$q(\mathbf{g},\mathbf{c}) = \int_{E} x^{k-2} (1-x)^{s-k} \left(\int_{(0,1)} \prod_{i=1}^{k} y_{i}^{c_{i}} (1-y_{i})^{g_{i}-c_{i}} G(dy_{1}) \cdots G(dy_{k}) \right) \Sigma(dx, dG), \quad k \geq 2,$$

イロト イヨト イヨト イヨト ヨー わらの

13/19

where Σ is a finite measure on $E \coloneqq [0,1] \times \mathcal{M}_1[0,1]$.

Characterization of snec

- Denote $\mathbf{g} = (g_1, \dots, g_s)$ and $\mathbf{c} = (c_1, \dots, c_k)$.
- Let $q(\mathbf{g}, \mathbf{c})$ be the rate at which a *k*-tuple of those *s* species merge into one, involving c_i genes in the *i*-th species merging.

The jump rate when at least two genes merge in one "activated" specie

$$q(\mathbf{g},\mathbf{c}) = \int_{E} (1-x)^{s-1} \left(\int_{(0,1)} y^{c_1-2} (1-y)^{g_1-c_1} G(dy) \right) \Sigma(dx, dG), \quad c_1 \ge 2,$$

イロト イヨト イヨト イヨト ヨー わらの

13/19

where Σ is a finite measure on $E \coloneqq [0,1] \times \mathcal{M}_1[0,1]$.

Outline

Simple nested exchangeable coalescent

- Motivation and definition
- Characterization
- Examples

Poisson construction

Let $(t_i, (x_i, y_i))_i$ be atoms of a Poisson point process M on $(0, \infty) \times (0, 1)^2$ of intensity $dt \otimes \nu_{sg}(dx)$.

- At time t_i each species tosses a coin with heads probability x_i .
- All the species present at time t_i^- getting heads merge into one.

Poisson construction of snec

Let $(t_i, (x_i, y_i))_i$ be atoms of a Poisson point process M on $(0, \infty) \times (0, 1)^2$ of intensity $dt \otimes \nu_{sg}(dx, dy)$.

- At time t_i each gene tosses a coin with heads probability y_i.
- If the *genes* are **inside** *species* getting *heads*, then all genes getting *heads* **merge** into one.

Poisson construction of snec

Let $(t_i, (x_i, y_i))_i$ be atoms of a Poisson point process M on $(0, \infty) \times (0, 1)^2$ of intensity $dt \otimes \nu_{sg}(dx, dy)$.

- At time t_i each gene tosses a coin with heads probability y_i .
- If the *genes* are **inside** *species* getting *heads*, then all genes getting *heads* **merge** into one.
- To get non-degenerate construction we assume $\int_{[0,1]^2} (x^2 + xy^2) \nu_{sg}(dx, dy) < \infty$.

16 / 19

イロト イポト イヨト イヨト 二日

17/19

Binary merging in the snec

Recall $\mathbf{g} = (g_1, \dots, g_s)$ and $\mathbf{c} = (c_1, \dots, c_k)$. Let us suppose that $\Sigma(dx, dG) = \delta_0 \times \delta_{\delta_0}$. Then

• $q(\mathbf{g}, \mathbf{c}) = \mathbb{1}_{\{k=2\}} \mathbb{1}_{\{c_1=0, c_2=0\}} + \mathbb{1}_{\{k=1\}} \mathbb{1}_{\{c_1=2\}}$

Binary merging in the snec

Recall $\mathbf{g} = (g_1, \dots, g_s)$ and $\mathbf{c} = (c_1, \dots, c_k)$. Let us suppose that $\Sigma(dx, dG) = \delta_0 \times \delta_{\delta_0}$. Then

• $q(\mathbf{g}, \mathbf{c}) = \mathbb{1}_{\{k=2\}} \mathbb{1}_{\{c_1=0, c_2=0\}} + \mathbb{1}_{\{k=1\}} \mathbb{1}_{\{c_1=2\}}$

We do not have simultaneous binary merging in the species and binary merging in the genes.

Further questions

• Which are classical measures in $(0,1)^2$ for defining "classical snec"?

Further questions

- **9** Which are classical measures in $(0,1)^2$ for defining "classical snec"?
- O To find some forward in time evolutionary models with (limit) genealogies being snec processes.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

18/19

- Discrete models
- Valued measure models
- Partition flows

Thank you!

