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Introduction

CB-processes.

A continuous-state branching process (or CB-process) is a non-negative
valued strong Markov process with probabilities (Px , x ≥ 0) such that for
any x , y ≥ 0, Px+y is equal in law to the convolution of Px and Py .

CB-processes may be thought of as the continuous (in time and space)
analogues of classical Galton-Watson branching processes.

More precisely, a CB-process Y = (Yt , t ≥ 0) is a Markov process taking
values in [0,∞], where 0 and ∞ are two absorbing states, and satisfying
the branching property.

In particular,

Ex

[
e−λYt

]
= exp{−xut(λ)}, for λ ≥ 0,

for some function ut(λ).
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Introduction

The function ut(λ) is determined by the integral equation∫ λ

ut (λ)

1

ψ(u)
du = t

where ψ (branching mechanism of Y ) satisfies the Lévy-Khincthine
formula

ψ(λ) = −aλ+ γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx1{x<1}

)
µ(dx ),

where a ∈ R, γ ≥ 0 and µ is a σ-finite measure such that∫
(0,∞)

(
1 ∧ x2

)
µ(dx ) <∞.

Observe Ex [Yt ] = xe−ψ
′(0+)t . Hence, in respective order, a CB-process is

called supercritical, critical or subcritical accordingly as ψ′(0+) < 0,
ψ′(0+) = 0 or ψ′(0+) > 0.
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Introduction

The probability of extinction is given by

Px

(
lim
t→∞

Yt = 0
)
= e−ηx ,

where η is the largest root of ψ.

A CB-process Y with branching mechanism ψ has a finite time extinction
almost surely if and only if∫ ∞ du

ψ(u)
<∞ and ψ′(0+) ≥ 0.
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Introduction

A CB-process can also be defined as the unique non-negative strong
solution of the stochastic differential equation

Yt =Y0 + a

∫ t

0

Ysds +

∫ t

0

√
2γ2YsdBs

+

∫ t

0

∫
(0,1)

∫ Ys−

0

z Ñ (ds,dz ,du) +

∫ t

0

∫
[1,∞)

∫ Ys−

0

zN (ds,dz ,du),

where B = (Bt , t ≥ 0) is a standard Brownian motion, N is a Poisson
random measure independent of B , with intensity ds ⊗ µ(dz )⊗ du and
Ñ is its compensated version.
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CB-process in a Lévy random environment

We introduce a continuous state branching process in a Lévy random
environment (CBLRE) as the unique non-negative strong solution of the
stochastic differential equation

Zt =Z0 + a

∫ t

0

Zsds +

∫ t

0

√
2γ2ZsdBs

+

∫ t

0

ZsdSs

+

∫ t

0

∫
(0,1)

∫ Zs−

0

z Ñ (ds,dz ,du) +

∫ t

0

∫
[1,∞)

∫ Zs−

0

zN (ds,dz ,du),

where

St = αt + σB
(e)
t +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds,dz )

+

∫ t

0

∫
R\(−1,1)

(ez − 1)N (e)(ds,dz ),
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CB-process in a Lévy random environment

We introduce a continuous state branching process in a Lévy random
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CB-process in a Lévy random environment

with α ∈ R and σ ≥ 0, B (e) = (B
(e)
t , t ≥ 0) is a standard Brownian

motion and N (e)(ds,dz ) is a Poisson random measure in R+ × R
independent of B (e) with intensity dsπ(dy), Ñ (e) its compensated
version and π is a σ-finite measure satisfying∫

R
(1 ∧ z 2)π(dz ) <∞.

We will assume that all the objects involve in the branching and
environmental terms are mutually independent.

We define the auxiliary process

Kt = mt+σB
(e)
t +

∫ t

0

∫
(−1,1)

vÑ (e)(ds,dv)+

∫ t

0

∫
R\(−1,1)

vN (e)(ds,dv),

where

m = α− σ2

2
−

∫
(−1,1)

(ev − 1− v)π(dv).
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CB-process in a Lévy random environment

Let C 2(R+) and D(R+) be the sets of functions with continues first and
second derivatives and the set of càdlàg functions, respectively.

Theorem
The previous stochastic differential equation has a unique non-negative
strong solution. The process Z = (Zt , t ≥ 0) is a Markov process and,
conditionally on K , it satisfies the branching property.

Moreover if |ψ′(0+)| <∞, then the auxiliary process can be taken as

K
(0)
t = Kt + ψ′(0+)t and for any t > 0

Ez

[
exp

{
− λZte

−K (0)
t

}∣∣∣K ] = exp
{
− zvt(0, λ,K

(0))
}

a.s.,

where for every (λ, δ) ∈ (R+,D(R+)), vt : s ∈ [0, t ] 7→ vt(s, λ, δ)
is the unique solution of the backward differential equation

∂

∂s
vt(s, λ,K

(0)) = eK
(0)
s ψ0(vt(s, λ,K

(0))e−K
(0)
s ), vt(t , λ,K

(0)) = λ,
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CB-process in a Lévy random environment

and

ψ0(λ) = ψ(λ)− λψ′(0) = γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
µ(d x ).

OQ: Can we find a unique solution vt(s, λ,K ) when ψ(0+) = −∞?

OQ: Can we define the SDE of above by replacing the Lévy environment
by another process? Actually, we can replace the Lévy environment by a
Markov additive environment (Palau & P.)

Neveu’s branching process: This example correspond to the case when

ψ(u) = u log u, u ≥ 0.

Observe that ψ′(0+) = −∞. In this case

vt(s, λ,K ) = exp

{
es
∫ t

s

e−uKudu + log λe−(t−s)
}
.
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Then,

Ez

[
exp

{
−λZte

−Kt

}∣∣∣K ] = exp

{
−zλe

−t

exp

{∫ t

0

e−sKsds

}}
a.s.,

which implies that

Pz

(
Zt > 0

∣∣∣K) = 1, t > 0.

Feller’s diffusion If a = µ(0,∞) = 0, the CBBRE is given by

Zt = Z0 + α

∫ t

0

Zsds + σ

∫ t

0

ZsdSs +

∫ t

0

√
2γ2ZsdBs .

Stable case. Here, the branching mechanism is of the form

ψ(λ) = −aλ+ cβλ
β+1, λ ≥ 0,

for some β ∈ (−1, 0) ∪ (0, 1), a ∈ R, and{
cβ < 0 if β ∈ (−1, 0),
cβ > 0 if β ∈ (0, 1).
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CB-process in a Lévy random environment

In this case, we note

ψ′(0+) =

{
−∞ if β ∈ (−1, 0),
−a if β ∈ (0, 1).

We use in both cases the backward differential equation of Theorem 1
and observe that it satisfies

∂

∂s
vt(s, λ, δ) = −avt(s, λ, δ) + cβv

β+1
t (s, λ, δ)e−βδs .

Therefore,

vt(s, λ, δ) = eas
(
(λeat)−β + βcβ

∫ t

s

e−β(δu+au)du

)−1/β
.

Implying the following a.s. identity

Ez

[
exp

{
−λZte

−K
(0)
t

}∣∣∣K (0)
]
= exp

{
−z

(
λ−β + βcβ

∫ t

0

e−βK (0)
u du

)−1/β
}
.
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Continuous state branching processes in random environments.

Long-term behaviour

Long-term behaviour

Similarly to the case of CB-processes, there are three events which are of
immediate concern for the process Z , explosion, absorption and
extinction.

Proposition

Assume |ψ′(0+)| <∞, then a CBPBRE Z with branching mechanism ψ
satisfies

Pz (Zt <∞) = 1, for all t > 0.

OQ: Can we get a necessary and sufficient condition?

Stable case with β ∈ (−1, 0). From the Laplace transform of Z̃ (taking λ
goes to 0), we deduce

Pz

(
Zt <∞

∣∣∣K) = exp

{
−z
(
βcβ

∫ t

0

e−β(Ku+au)du

)−1/β}
a.s.,
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Assume |ψ′(0+)| <∞, then a CBPBRE Z with branching mechanism ψ
satisfies

Pz (Zt <∞) = 1, for all t > 0.

OQ: Can we get a necessary and sufficient condition?

Stable case with β ∈ (−1, 0). From the Laplace transform of Z̃ (taking λ
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Long-term behaviour

implying

Pz

(
Zt =∞

∣∣∣K) = 1− exp

{
−z
(
βcβ

∫ t

0

e−β(Ku+au)du

)−1/β}
> 0.

Moreover, if the process (Ku + au, u ≥ 0) does not drift to +∞, we
deduce that limt→∞ Zt =∞, a.s.

On the other hand, if the process (Ku + au, u ≥ 0) drifts to +∞, we
have an interesting behaviour of the process Z ,

Pz

(
Z∞ =∞

)
= 1− E

[
exp

{
−z
(
βcβ

∫ ∞
0

e−β(Ku+au)du

)−1/β}]
.

Neveu case. By taking λ goes to 0 in the Laplace exponent of Z̃ , one can
see that the process is conservative conditionally on the environment, i.e.

Pz (Zt <∞|K ) = 1,

for all t ∈ (0,∞) and z ∈ [0,∞).
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Continuous state branching processes in random environments.

Long-term behaviour

Proposition

Assume that |ψ′(0+)| <∞. Let (Zt , t ≥ 0) be a CBPBRE with
branching mechanism given by ψ.

i) If K (0) drifts to −∞, then Pz

(
lim
t→∞

Zt = 0
∣∣∣K (0)

)
= 1, a.s.

ii) If K (0) oscillates, then Pz

(
lim inf
t→∞

Zt = 0
∣∣∣K (0)

)
= 1, a.s.

Moreover if γ > 0 then

Pz

(
lim
t→∞

Zt = 0
∣∣∣K (0)

)
= 1, a.s.
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Continuous state branching processes in random environments.

Long-term behaviour

Proposition

iii) If K (0) drifts to +∞ and∫ ∞
x ln x µ(dx ) <∞,

then Pz

(
lim inf
t→∞

Zt > 0
∣∣∣K (0)

)
> 0 a.s., and there exists a

non-negative finite r.v. W such that

Zte
−K (0)

t −→
t→∞

W , a.s and
{
W = 0

}
=
{

lim
t→∞

Zt = 0
}
.

Moreover if γ > 0, we have

Pz

(
lim
t→∞

Zt = 0
)
≥
(
1 +

zσ2

γ2

)− 2m
σ2

.



16/ 20

Continuous state branching processes in random environments.

Long-term behaviour

OQ: What happen when the integral condition is not satisfied?

It is important to note that in the Feller and stable cases, one can deduce
directly that

lim
t→∞

Zt = 0, a.s.,

whenever K (0) does not drift to +∞.

In the case when K (0) drifts to +∞, we have

Pz ( lim
t→∞

Zt = 0|K (0)) = exp

{
−z
(
βcβ

∫ ∞
0

e−βK
(0)
u du

)−1/β}
, a.s.
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Continuous state branching processes in random environments.

Stable case

Stable case

Theorem
Let (Zt , t ≥ 0) be the stable CBLRE with index β ∈ (−1, 0) and
Z0 = z > 0.

i) Subcritical-explosion. If φ′K (0+) < 0, then there exist c1(z ) > 0
such that

lim
t→∞

Pz (Zt <∞) = c1(z ).

ii) Critical-explosion. If φ′K (0+) < 0 (+ some moments conditions),
then then there exist c2(z ) > 0 such that

lim
t→∞

√
tPz (Zt <∞) = c2(z ).

iii) Supercritical-explosion. If φ′K (0+) < 0 (+ some moments
conditions) then there exist c3(z ) > 0

lim
t→∞

t
3
2 eφK (τ)Pz (Zt <∞) = c3(z ),

where τ is the value at which φK attains its minimum.
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Continuous state branching processes in random environments.

Stable case

Theorem
Let (Zt , t ≥ 0) be a the stable CBLRE with β ∈ (0, 1). Then for all
z > 0,

i) (Supercritical case) If φ′K (0+) > 0 (+ some moments conditions),
then there exist c4(z ) > 0 such that

lim
t→∞

Pz (Zt > 0) = c4(z ).

ii) (Critical case) If φ′K (0+) = 0 (+ some moments conditions), then
there exist c5(z ) > 0 such that

lim
t→∞

√
tPz (Zt > 0) = c5(z ).
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Continuous state branching processes in random environments.

Stable case

Theorem

iii) (Weakly subcritical) If φ′K (0+) = 0 and φ′K (1) > 0 (+ some
moments conditions), then there exist c6(z ) > 0 such that

lim
t→∞

t
3
2 eφK (τ)Pz (Zt > 0) = c6(z ),

where τ is the value at which φK attains its minimum.

iv) (Intermediately subcritical) If φ′K (0+) = 0 and φ′K (1) = 0 (+ some
moments conditions), then there exist c7 > 0 such that

lim
t→∞

√
teφK (1)Pz (Zt > 0) = zc7.

v) (Strongly subcritical)If φ′K (0+) = 0 and φ′K (1) < 0 (+ some
moments conditions), then there exist c7 > 0 such that

lim
t→∞

etφK (1)Pz (Zt > 0) = zc8.
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Continuous state branching processes in random environments.

More open questions

Can we go further than the stable case ?

Bansaye, P. and Smadi are
studying the case when ψ(λ) > λ1+ε, for ε > 0 and K satisfies

lim
t→∞

P(Kt > 0) = ρ ∈ [0, 1].

Can we study its genealogy?

Palau is studying how the prolific
individuals are affected by the environment.

What about quasi-stationary distributions?

In the stable case, there must be another regime for the process
conditioned to die-out.

We can construct superprocesses (see Mytnik 96), can we study the
event of extinction or local extinction?

What about competition models?

Gonzalez-Casanova, P. and Perez
are studying a particular model which is linked to
fragmentation-coalescence processes.
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