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Definiton
@ A stochastic process (X; : t > 0) with probabilities (P, x > 0) on
D(R,,R,) such that
Exryle ] = EJeE, e, A>0,t>0.

(written in shorthand P, =P, @ P, ).
@ The transition semigroup is characterised by

Ey[e ] = e %)X, A>0,t>0.
where .
() = A— / Pus(\)ds,  £>0
0

such that

P(N) = —q—a)\+a)\2+/ (e ™ —1+ A (c1yx)MN(dx), A>0,
(0,00)

with a € R, 0 > 0 and I is a measure on (0, 00) satisfying
J0,00) (1A x3)N(dx) < oo.
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Conservative, Extinction, Extinguishing and Criticality

o Conservative: To avoid the event of explosion
{3 > 0: Xy = 00 Vt > (o} occurring with positive probability,
we have the necessary and sufficient conditions

/o+|¢(lu)|du_oo

@ Extinction vs Extinguishing: There are two different ways that a
CSBP can ‘die out’:
Extinction: 3(y : X; = 0Vt > (p
Extinguishing: lim; o X; =0, X; > 0Vt > 0.

e Extinction if and only if

/ocw(lu)du<oo.

@ Criticality: Just like Galton-Watson processes there is exponential
mean growth:
E,[X;] = xe~ ¥/ (01t

Hence subcritical /supercritical /critical accordingly as
' (0+) > 0/9'(0+) < 0/4'(0+) = 0.
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Continuous-time Galton—Watson processes and compound
Poisson

o Write {Z(t) : t > 0} for the number of individuals at time t in a
continuous-time GW process with offspring distribution p;, i > 0.

@ Introduce a new distribution on {m; : i = —1,0,1,2,---}, where
7i = pit1- (The number of GW offspring minus 1).

@ Write, for t > 0,

t
Ji— / Z(s)ds,  o(t) = inf{u>0:Jy> t}
0
(with the usual inf ) = 0c) and define

L(t) = Z(¢(t)),  t=0.

@ Consider what happens up to the first branching time Ti:

o If Z(0) = k, then T; is the minimum of k independent exponentially
distributed random variables, each with rate g. i.e. Ty ~ exp(ko).

o And hence, J1, = kTy ~ exp(0).
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Continuous-time Galton—Watson processes and compound
Poisson

@ Apply Markov property at time T3, when the number of individuals
moves from k to k + i with probability 7;, and use this same
reasoning again until the second branching time, and so on....

@ The time change Z(¢(t)) has the effect of spacing out branching
events with independent and identical exponentially distributed
random times.

@ Said another way: {L(t): t > 0} is a compound Poisson process
with arrival rate g and jump distribution F(dx) = Y° | wd;(dx).
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Continuous-time Galton—Watson processes and compound
Poisson

@ The converse is also true: Suppose that L; is a compound Poisson
process with arrival rate g and jump distribution
F(dx) = > | méi(dx). Let

1
K = / 7d5’ t 2 07
' o L(s)

set
0(t) =inf{lu>0: K, >t}
and define
Z(t) = L(O(t) A7), t=>0,
where

10 = inf{t > 0: L(t) = 0}.

@ Then {Z(t): t > 0} is a continuous-time Galton—Watson process.
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Lamperti transform

@ The same time change using the additive functional

t
/ Xsds, t>0
0

makes X((t)), t > 0 a Lévy process with no negative jumps and
with Laplace exponent ).

e Similarly, given a Lévy process {L(t) : t > 0} with no negative
jumps and Laplace exponent ), the same transform as before using
the additive functional

t
——ds, t>0
/o L(s)

makes L(6(t) A 7o), t > 0, a CSBP with branching mechanism 1),

where
10 = inf{t > 0: L(t) = 0}.
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CSBP as solution SDEs

@ Represent the Lévy processes with Laplace exponent
L(t)=—at+oB: + / XN(dS,dX)—l—/ / XN(dS,dX).
[0,¢] JIx|=1 [0,¢] /|x|<1

@ There is a standard Brownian motion BX, and an independent
Poisson measure N* on [0,00) x (0,00) x (0, oc] with intensity
measure dsdvA(dr) such that

t t
xt:x+a/ XsderU/ VX, dBX
0 0

t Xs— 0o t Xs— 1
+/ / / rNX(ds,dv,dr)+/ / / rNX(ds,dv,dr),
0 0 1 0 JO 0

where NX is the compensated Poisson measure associated with NX.
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Infinite divisibility and excursions

o The factorisation of — log E,[e %] in to u:()\) and x is a

consequence of ‘infinite divisibility”: for x > 0 and any n € N
Py =Pyn® - @Py,
@ It can be show that (P, x > 0) generates a measure N on
Do(Ry,Ry ) :={w € DRy, Ry ) : wo = 0}

such that

Edfe ] =exp{ L )(1—e‘A°‘“)dst(w)} — U
o (R, Ry

so that
N(1 — e ) = / (1 — e ) dN(w) = u:(N).
DU(R+aR+)

@ Think Campbell formula!!l See board.
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CSBP with immigration

o Define a Markov process X* = {X{ : t > 0} on D(R,R.), with
probabilities {Py : x > 0}, branching mechanism « and immigration
mechanism ¢ such that:

@ Forall x,t >0and 8 >0,

Ev(e ™) = exp{—xue(\) — /0 6(ue_s(\))ds}

where u:(\) as before and ¢ is the Laplace exponent of any
subordinator.

@ Specifically, for 6 > 0,

#(0) = 60 + / (1 —e )T (dx),

(0,00)

where T is a measure concentrated on (0, c0) satisfying
f(o ooy (LA X)T(dx) < o0.
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CSBP with immigration

@ Suppose that N* is a Poisson point process with intensity

<5dN(w)+ /(O )T(dx)d]P’X(w)> ds

then we can identify the process

X: = Xt +/ / We—s N*(d57d£&)), t 2 0,
[0,t] / Do(R+,R+)

where X is a CSBP issued from Xp = x.

@ Another way of seeing this: If Sp =t + > ., AS, is the
subordinator with exponent ¢, then -

LS, 0)
X! *Xﬁ—Zwt” )—t—ng”u, t >0,
u<t u<t
where w(#A5) and w(#:9 are the points of the point process N*,
starting with positive and zero mass respectively.
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Stationary subcritical processes with immigration

Theorem (M. Pinsky)

Take 1, ¢ and X* as before (i) conservative). Suppose that ¢)'(0+) > 0.
Then, X* converges in distribution if and only if

RGN
/o+w<r)d =
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Spine

Theorem (Lambert)

Suppose that X = {X; : t > 0} is a conservative continuous-state
branching process with branching mechanism ) satisfying
= ﬁdu < 00. For each event A€ o(Xs :s <'t) and x > 0,

PI(A) := lim P.(Al¢o > t +5)

is well defined as a probability measure and satisfies

i

PI(A) = E,(14e? 0Dt )

X

In particular, P1(Co < 00) = 0 and {e?'©OHtX, : t >0} is a
P-martingale.
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Spine

Lemma (Lambert)

Fix x > 0. Suppose that (X,Py) is a conservative continuous-state
branching process with branching mechanism 1) satisfying

= ﬁdu < 00. Then (X, P]) has the same law as a continuous-state
branching process with branching mechanism 1) and immigration
mechanism ¢, where for 8 > 0,

¢(0) = ¢'(0) — v'(0+).

Note that ¢ has Lévy measure T(dx) = x[M(dx).
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Theorem (Fittipaldi and Fontbona)

Under P, the process Z is the unique strong solution of the following
stochastic differential equation:

t t t Zs— o)
Zt:x—i-a/ sts—i—a/ \/zsstu/ / / rNT(ds,dv,dr)
0 0 0 0 1

t Zs— 1 ~ t proo
+/ / / rNT(ds,dv,dr)—i—/ / rN*(ds,dr) + o?t,
0 0 0 0 0

where {B{ : t > 0} is a Brownian motion, N and N* are Poisson
measures on [0,00) x (0,00)? and [0, 00) x (0,00) with intensity
measures ds x dv x [1(dr) and ds x r[1(dr), respectively, and these
objects are mutually independent (as usual, Nt represents the
compensated measure associated with NT).
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Skeleton (or backbone)

A conservative supercritical CSBP X with branching mechanism 1 under
P,, x > 0 can be identified as equal in law to the following construction.

@ Let \* be the solution to the equation ¢)(A*) = 0. Let N be an
independent Po(A*x) r.v.

@ Initiate N independent Galton-Watson processes with branching
mechanism

F(s) = a3 pnls” —5) = 3" (1 = 5)), s € (0,1),

n>0

where the individual components of F are given by g = ¥'(\*),
po=p1=0and for n> 2,

(0,00) n!

pn= % {U()\*)21{n_2} + (A*)"/ Xne’\*xl'l(dx)} .
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Skeleton (or backbone)

@ Along the edges of the space-time graph of the N Galton-Watson
trees, immigrate CSBPs w. at rate

20N*(dw) +/ ye_k*yl'l(dy)]}”;(dw)
(0,00)

where P, x > 0 is the family of laws associated to the CSBP with
branching mechanism ¥*(X) = ¥(A + A*) (corresponding to X
conditioned to die out - so, in the appropriate sense, P} = }P’i) and
N* is the associated excursion measure.

@ Moreover, at any branch point, given that n > 2 offspring are
produced, then an additional and indpendent I’} branching process is
immigrated with probability

nn(dy) = ﬁ’(k) {ﬁ(k*)z%(dﬂl{n—z} + (A*)"{:e””(dy)} :
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Skeleton (or backbone)

e Finally add an independent copy of (X,P}) to the Poisson number
of ‘dressed’ Galton-Watson trees and this is what (X,Py) is equal to
in law.



