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Definiton

A stochastic process (Xt : t ≥ 0) with probabilities (Px , x ≥ 0) on
D(R+,R+) such that

Ex+y [e−λXt ] = Ex [e−λXt ]Ey [e−λXt ], λ ≥ 0, t ≥ 0.

(written in shorthand Px+y = Px ⊗ Py ).

The transition semigroup is characterised by

Ex [e−λXt ] = e−ut(λ)x , λ ≥ 0, t ≥ 0.

where

ut(λ) = λ−
∫ t

0

ψ(us(λ))ds, t ≥ 0

such that

ψ(λ) = −q−aλ+σλ2+

∫
(0,∞)

(e−λx−1+λ1(x<1)x)Π(dx), λ ≥ 0,

with a ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x2)Π(dx) <∞.



Conservative, Extinction, Extinguishing and Criticality

Conservative: To avoid the event of explosion
{∃ζ∞ > 0 : Xt =∞ ∀t ≥ ζ∞} occurring with positive probability,
we have the necessary and sufficient conditions∫

0+

1

|ψ(u)|
du =∞

Extinction vs Extinguishing: There are two different ways that a
CSBP can ‘die out’:
Extinction: ∃ζ0 : Xt = 0∀t ≥ ζ0

Extinguishing: limt→∞ Xt = 0, Xt > 0 ∀t ≥ 0.
Extinction if and only if ∫ ∞ 1

ψ(u)
du <∞.

Criticality: Just like Galton-Watson processes there is exponential
mean growth:

Ex [Xt ] = xe−ψ
′(0+)t

Hence subcritical/supercritical/critical accordingly as
ψ′(0+) > 0/ψ′(0+) < 0/ψ′(0+) = 0.



Continuous-time Galton–Watson processes and compound
Poisson

Write {Z (t) : t ≥ 0} for the number of individuals at time t in a
continuous-time GW process with offspring distribution pi , i ≥ 0.

Introduce a new distribution on {πi : i = −1, 0, 1, 2, · · · }, where
πi = pi+1. (The number of GW offspring minus 1).

Write, for t ≥ 0,

Jt =

∫ t

0

Z (s)ds, ϕ(t) = inf{u > 0 : Ju > t}

(with the usual inf ∅ =∞) and define

L(t) = Z (ϕ(t)), t ≥ 0.

Consider what happens up to the first branching time T1:

If Z (0) = k , then T1 is the minimum of k independent exponentially
distributed random variables, each with rate q. i.e. T1 ∼ exp(kσ).

And hence, JT1 = kT1 ∼ exp(σ).



Continuous-time Galton–Watson processes and compound
Poisson

Apply Markov property at time T1, when the number of individuals
moves from k to k + i with probability πi , and use this same
reasoning again until the second branching time, and so on....

The time change Z (ϕ(t)) has the effect of spacing out branching
events with independent and identical exponentially distributed
random times.

Said another way: {L(t) : t ≥ 0} is a compound Poisson process
with arrival rate q and jump distribution F (dx) =

∑∞
i=−1 πδi (dx).



Continuous-time Galton–Watson processes and compound
Poisson

The converse is also true: Suppose that Lt is a compound Poisson
process with arrival rate q and jump distribution
F (dx) =

∑∞
i=−1 πδi (dx). Let

Kt =

∫ t

0

1

L(s)
ds, t ≥ 0,

set
θ(t) = inf{u > 0 : Ku > t}

and define
Z (t) = L(θ(t) ∧ τ0), t ≥ 0,

where
τ0 = inf{t > 0 : L(t) = 0}.

Then {Z (t) : t ≥ 0} is a continuous-time Galton–Watson process.



Lamperti transform

The same time change using the additive functional∫ t

0

Xsds, t ≥ 0

makes X (ϕ(t)), t ≥ 0 a Lévy process with no negative jumps and
with Laplace exponent ψ.

Similarly, given a Lévy process {L(t) : t ≥ 0} with no negative
jumps and Laplace exponent ψ, the same transform as before using
the additive functional ∫ t

0

1

L(s)
ds, t ≥ 0

makes L(θ(t) ∧ τ0), t ≥ 0, a CSBP with branching mechanism ψ,
where

τ0 = inf{t > 0 : L(t) = 0}.



CSBP as solution SDEs

Represent the Lévy processes with Laplace exponent ψ

L(t) = −at +σBt +

∫
[0,t]

∫
|x|≥1

xN(ds, dx) +

∫
[0,t]

∫
|x|<1

xÑ(ds, dx).

There is a standard Brownian motion BX , and an independent
Poisson measure NX on [0,∞)× (0,∞)× (0,∞] with intensity
measure dsdvΛ(dr) such that

Xt = x + a

∫ t

0

Xsds + σ

∫ t

0

√
XsdBX

s

+

∫ t

0

∫ Xs−

0

∫ ∞
1

rNX (ds, dv , dr) +

∫ t

0

∫ Xs−

0

∫ 1

0

r ÑX (ds, dv , dr),

where ÑX is the compensated Poisson measure associated with NX .



Infinite divisibility and excursions

The factorisation of − logEx [e−λXt ] in to ut(λ) and x is a
consequence of ‘infinite divisibility’: for x > 0 and any n ∈ N

Px = Px/n ⊗ · · · ⊗ Px/n

It can be show that (Px , x ≥ 0) generates a measure N on

D0(R+,R+) := {ω ∈ D(R+,R+) : ω0 = 0}

such that

Ex [e−λXt ] = exp

{∫ x

0

∫
D0(R+,R+)

(1− e−λωt )dsdN(ω)

}
= e−ut(λ)x

so that

N(1− e−λωt ) =

∫
D0(R+,R+)

(1− e−λωt )dN(ω) = ut(λ).

Think Campbell formula!! See board.



CSBP with immigration

Define a Markov process X ∗ = {X ∗t : t ≥ 0} on D(R+,R+), with
probabilities {Px : x ≥ 0}, branching mechanism ψ and immigration
mechanism φ such that:

For all x , t > 0 and θ ≥ 0,

Ex(e−λX
∗
t ) = exp{−xut(λ)−

∫ t

0

φ(ut−s(λ))ds}

where ut(λ) as before and φ is the Laplace exponent of any
subordinator.

Specifically, for θ ≥ 0,

φ(θ) = δθ +

∫
(0,∞)

(1− e−θx)Υ(dx),

where Υ is a measure concentrated on (0,∞) satisfying∫
(0,∞)

(1 ∧ x)Υ(dx) <∞.



CSBP with immigration

Suppose that N∗ is a Poisson point process with intensity(
δdN(ω) +

∫
(0,∞)

Υ(dx)dPx(ω)

)
ds

then we can identify the process

X ∗t = Xt +

∫
[0,t]

∫
D0(R+,R+)

ωt−s N∗(ds, dω), t ≥ 0,

where X is a CSBP issued from X0 = x .

Another way of seeing this: If St = δt +
∑

u≤t ∆Su is the
subordinator with exponent φ, then

X ∗t = Xt +
∑
u≤t

ω
(u,∆Su)
t−u +

∑
u≤t

ω
(u,0)
t−u , t ≥ 0,

where ω(u,∆Su) and ω(u,0) are the points of the point process N∗,
starting with positive and zero mass respectively.



Stationary subcritical processes with immigration

Theorem (M. Pinsky)

Take ψ, φ and X ∗ as before (ψ conservative). Suppose that ψ′(0+) ≥ 0.
Then, X ∗ converges in distribution if and only if

−
∫

0+

φ(r)

ψ(r)
dr <∞,



Spine

Theorem (Lambert)

Suppose that X = {Xt : t ≥ 0} is a conservative continuous-state
branching process with branching mechanism ψ satisfying∫∞ 1

ψ(u) du <∞. For each event A ∈ σ(Xs : s ≤ t) and x > 0,

P↑x (A) := lim
s↑∞

Px(A|ζ0 > t + s)

is well defined as a probability measure and satisfies

P↑x (A) = Ex(1Aeψ
′(0+)t Xt

x
).

In particular, P↑x (ζ0 <∞) = 0 and {eψ′(0+)tXt : t ≥ 0} is a
Px -martingale.



Spine

Lemma (Lambert)

Fix x > 0. Suppose that (X ,Px) is a conservative continuous-state
branching process with branching mechanism ψ satisfying∫∞ 1

ψ(u) du <∞. Then (X ,P↑x ) has the same law as a continuous-state

branching process with branching mechanism ψ and immigration
mechanism φ, where for θ ≥ 0,

φ(θ) = ψ′(θ)− ψ′(0+).

Note that φ has Lévy measure Υ(dx) = xΠ(dx).



Theorem (Fittipaldi and Fontbona)

Under P↑, the process Z is the unique strong solution of the following
stochastic differential equation:

Zt = x + a

∫ t

0

Zsds + σ

∫ t

0

√
ZsdB↑s +

∫ t

0

∫ Zs−

0

∫ ∞
1

rN↑(ds, dv , dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

r Ñ↑(ds, dv , dr) +

∫ t

0

∫ ∞
0

rN?(ds, dr) + σ2t,

where {B↑t : t ≥ 0} is a Brownian motion, N↑ and N? are Poisson
measures on [0,∞)× (0,∞)2 and [0,∞)× (0,∞) with intensity
measures ds × dv × Π(dr) and ds × rΠ(dr), respectively, and these
objects are mutually independent (as usual, Ñ↑ represents the
compensated measure associated with N↑).



Skeleton (or backbone)

A conservative supercritical CSBP X with branching mechanism ψ under
Px , x > 0 can be identified as equal in law to the following construction.

Let λ∗ be the solution to the equation ψ(λ∗) = 0. Let N be an
independent Po(λ∗x) r.v.

Initiate N independent Galton-Watson processes with branching
mechanism

F (s) = q
∑
n≥0

pn(sn − s) =
1

λ∗
ψ(λ∗(1− s)), s ∈ (0, 1),

where the individual components of F are given by q = ψ′(λ∗),
p0 = p1 = 0 and for n ≥ 2,

pn =
1

λ∗ψ′(λ∗)

{
σ(λ∗)21{n=2} + (λ∗)n

∫
(0,∞)

xn

n!
e−λ

∗xΠ(dx)

}
.



Skeleton (or backbone)

Along the edges of the space-time graph of the N Galton-Watson
trees, immigrate CSBPs ω· at rate

2σN∗(dω) +

∫
(0,∞)

ye−λ
∗yΠ(dy)P∗y (dω)

where P∗x , x ≥ 0 is the family of laws associated to the CSBP with
branching mechanism ψ∗(λ) = ψ(λ+ λ∗) (corresponding to X
conditioned to die out - so, in the appropriate sense, P∗y = P↓y ) and
N∗ is the associated excursion measure.

Moreover, at any branch point, given that n ≥ 2 offspring are
produced, then an additional and indpendent P∗y branching process is
immigrated with probability

ηn(dy) =
1

pnλ∗ψ′(λ∗)

{
β(λ∗)2δ0(dy)1{n=2} + (λ∗)n

yn

n!
e−λ

∗yΠ(dy)

}
.



Skeleton (or backbone)

Finally add an independent copy of (X ,P∗x ) to the Poisson number
of ‘dressed’ Galton-Watson trees and this is what (X ,Px) is equal to
in law.


