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Partitions

A partition of a set § is a collection of disjoint subsets B; of S

such that
JBi=S.

1
The sets B; are called blocks of the partition. Blocks of a parti-
tion of size 1 are called singletons.

If w is a partition, write + ~5 7 if 2 and 5 are in the same block.
Let #£7 denote the number of blocks of the partition .

Poo = set of partitions of N.
Pn = set of partitions of {1,...,n}.

If 1 € Pxo, Ofr m € Py, With m > n, then R,m € P, is the restriction
of w to {1,...,n}, which means i ~p . j if and only if i ~x j.

Example: = = {{1,3,4,7,8},{2,5,9},{6}}
Rsm = {{1,3,4},{2,5}}.



Exchangeable Random Partitions

If m € P and o is a permutation of N, define o € P~ such that
0(i) ~or o(j) if and only if i ~r 5.

If M is a random partition of N, we say [l is exchangeable if
ol =, N for all permutations o of N.

©.@)
LetAz{(azl,xz,...):a:1>zc2>...20,z:ci§1}.

1=1
Paintbox (stick-breaking) construction: Let x = (z1,25,...) € A.
Divide [0, 1] into subintervals of lengths x1,x5,... and 1-3"°2 ; x;.

Let Uy, Us,... bei.i.d. Uniform(0,1).

Define I such that ¢ ~n j if and only if U; and U, fall in the same
subinterval, other than the last interval of length 1 — Z;’;l x;.
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Rgll = {{17 3, 4}7 {2}3 {5}7 {6}}



Given =z € A, let P*¥ denote the distribution of the associated
paintbox partition.

Theorem (Kingman, 1978): Suppose I is an exchangeable ran-
dom partition of N. Then there exists a probability measure u
on A such that

P(Me A) = /A P*(A) u(dx)

for all measurable subsets A of Ps. We call Il a p-paintbox
partition.

Suppose B is a block of I'l. Then
1 mn
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exists and is called the asymptotic frequency of B. The sequence
of ranked asymptotic frequencies of blocks has distribution wu.

Note: Every block of [l either is a singleton or has positive
asymptotic frequency.



Kingman’s n-Coalescent (Kingman, 1982)
Continuous-time Markov chain (My(t),t > 0) taking values in P,.
M,(0) consists of n singletons.

A transition that involves merging two blocks of the partition
into one happens at rate 1. No other transitions are possible.

When there are k blocks, the distribution of the time until the
next merger is exponential with rate k(k — 1)/2. Then two ran-
domly chosen blocks merge.

Example: MM,(t) = {1},{2},{3},{4},{5} 0<t<m
ﬂn(t) — {17 3}7 {2}7 {4}7 {5} 71 St <1
I—In(t) — {17 3, 5}7 {2}7 {4} T <t <73
Mn(t) = {1,3,5}, {2, 4} T2 < t< 14
I_In(t) — {172737475} T4 <t



Kingman’s Coalescent
Consistency: if m > n, then (RN, (t),t > 0) and (My(t),t > 0)
have the same law.

By Kolmogorov's Extension Theorem, there is a continuous-time
Markov process (Moo(t),t > 0) with state space P~ such that
(RnMxo(t),t > 0) has the same law as (My(t),t > 0) for all n.

The process (Moo(t),t > 0) is called Kingman's coalescent.



Coalescents with multiple mergers (A-coalescents)
Pitman (1999), Sagitov (1999), Donnelly-Kurtz (1999).

Definition (Pitman, 1999): A coalescent with multiple mergers
iS @ Poo-valued process Moo = (Mxo(t),t > 0) such that:

e M (0) is the partition of N into singletons.

e For all n € N, the process (RplMso(t),t > 0) is a continuous-
time P,-valued Markov chain with the property that when
RnMoo(t) has b blocks, each k-tuple of blocks is merging to
form a single block at some fixed rate )\jj, and no other
transitions are possible.

{1},{2},{3}, {4} — {1,2,3},{4} rate A4 3
{1,2},{3,6,7},{4},{5,8} =+ {1,2,3,4,6,7},{5,8} rate A\g3



Characterization of coalescents with multiple mergers

Theorem (Pitman, 1999): For any coalescent with multiple
mergers, we have

1
oy = /O 2F=2(1 — 2)bF A(dz)

for some finite measure A on [0, 1].
Definition: We call a process with these rates a A-coalescent.

Note: When A = J§g, we get Kingman's coalescent because
(>‘b,2 = 17)‘b,k = 0 for k > 2).



Proof of Pitman’s Theorem

Let (Moo(?),t > 0) be a coalescent with multiple mergers.
Let T" be the time when {1} and {2} merge.

Let By, Bo,... bethe blocks of My (T'—), ordered by their smallest
elements. Assume for now #MNoo(T—) = oo.

Let £ = 1 if B; merges with {1} and {2} at time T, and £ =0
otherwise. Then (&;)25 is exchangeable. Thus, by de Finetti's
Theorem, there exists a probability measure A’ such that

1
Pz=- =& =141 ==& =0) = /o 2P 72(1—z)"F N (dx).

We have P(§3 ==, =141 = =§=0) = N\ i/ 22.
Let A = >\2,2/\,. Then
1
oy = /O 2F=2(1 — )% A(dz).

If #MNx(T—) < oo, then condition #Moo(T—) > k and apply Kol-
mogorov'’'s Extension Theorem.



Exchangeable Coalescent Processes
(Schweinsberg (2000), Mohle and Sagitov (2001),
Bertoin and Le Gall (2003))

One can consider also coalescents that allow for simultaneous
multiple mergers.

Let T be the time when integers 1 and 2 merge, and let By, Bo, ...
be the blocks of M(T-).

Let W be the partition of {3,4,...} such that ¢ ~y, j if and only
if B, and B, are in the same block of M(T). Then W is an
exchangeable random partition, thus a =’-paintbox partition for
some probability measure =’ on A.

Let = = )\2,23/, where Ao o is the rate at which the integers 1
and 2 merge. The associated coalescent process is called the
—-coalescent.



Biological motivation

Coalescent processes describe the genealogy of a sample of size
n from a population. Here 1 ~Ma(t) J if the ¢th and jth individuals
in the sample have the same ancestor at time —t.

1 2 3 4 5 1 2 3 4 5

Applications of coalescents with multiple mergers:

e Large family sizes (many lineages trace back to individual
with large number of offspring).

e Natural selection (many lineages trace back to individual who
got a beneficial mutation).



Questions of Interest

. Given a model for how a population evolves, determine what
coalescent process describes its genealogy.

. Understand the distribution of the time T, for n blocks to
merge into one. Note that 1) is the height of the tree, and
the time back to the most recent common ancestor (MRCA).

. Understand the distribution of the total tree length L,, when
the coalescent starts with n blocks. This should be approxi-
mately proportional to the number of mutations in a sample
of size n from a population.

. Understand the distribution of L,, ,, the total length of the
branches that are ancestors of k£ of the n leaves of the tree.
This should be approximately proportional to the number of
mutations that appear on k out of n individuals in the pop-
ulation. Note: L, 1 is the total length of external branches.



Poisson process construction of A-coalescents

Let w be a partition of N into blocks B1,B>,.... Let p € (0, 1].
A p-merger of 7 is obtained as follows:

o Let £1,&5,... beilid. with P(§;, =1) =p, P(&,=0)=1—p.
e Merge the blocks B; such that ¢ = 1.

Write A = adg + Ng, where Ag({0}) = 0. Transitions:
e Each pair of blocks merges at rate a.

e Construct a Poisson point process on [0,00) x (0,1] with
intensity dt x p~2Ag(dp). If (¢t,p) is a point of this Poisson
process, then an p-merger occurs at time t.

1 —

0 ° I e °
O t

1
When there are b blocks, A :/O pF72(1 — p)o7F A(dp).



Large family sizes (Schweinsberg, 2003)

Consider a population in which the number of offspring £ of an
individual satisfies P(§ > k) ~ Ck™%, where 1 < a < 2.

If there are N individuals, this reproduction event produces a
p-merger with p > « if and only if

sz <— £ > * - N
E+ N l—=x

The probability of such a family in a given generation is

—Q
NPle>—2  N|~Nc[—2—.N])| .
l1—=x 1l —=x

The rate of such mergers in the Beta(2 — «a, a)-coalescent is

1 1 —1—« oa—1 _ 1 L -
r(a)r(z—a)/xp (1-p) dp_ozF(a)F(Q—a)(l—a:) |

If a > 2, Kingman's coalescent describes the genealogy.



Populations undergoing selection

In some standard population models involving natural selection,
the genealogy is given by the Bolthausen-Sznitman coalescent,
the A-coalescent in which A is the Beta(1, 1) distribution.

T he Bolthausen-Sznitman coalescent describes the genealogy if,
when the population has size N, events in which an individual
acquires a beneficial mutation and quickly produces at least Nx
descendants happen at a rate proportional to z—1.

Non-rigorous work: Brunet, Derrida, Mueller, Munier (2007)
Desai, Walczak, Fisher (2013)
Neher, Hallatschek (2013)

Rigorous work: Berestycki, Berestycki, Schweinsberg (2013)
Schweinsberg (2015)



Basic properties of AN-coalescents (Pitman, 1999)

Suppose (Moo(t),t > 0) is a N-coalescent. Then:

1. Jump-hold property: let T = inf{t : MNoo(t) # Mxo(0)}. If

1 2
/o p~ < A(dp) < oo,

then P(T > 0) = 1. Otherwise, P(T =0) = 1.

2. Let X1(t) > X5(t) > ... be the asymptotic frequencies of the
blocks of the exchangeable random partition My (t). The
coalescent has proper frequencies if P(3272 ;1 Xp(t) = 1) =1
for all ¢t > 0. This is equivalent to:

P({1} is a block of M (t)) =0 for all t > 0.

Thus, the A-coalescent has proper frequencies if and only if

[ vt Aldp) = o
O |



Coming Down from Infinity

Definition: Suppose Ny is a A-coalescent. If #My(t) = oo for
all ¢t > 0, then we say the process stays infinite. If #MNx(t) < oo
for all ¢t > 0, then we say the process comes down from infinity.

Theorem (Pitman, 1999): If A({1}) = 0O, then the A-coalescent
either comes down from infinity almost surely or stays infinite
almost surely.

Let 1), be the first time that 1,...,n are in the same block. Then
O<T5 <I3< ... 17T Tx. If Teo < oo, then all positive integers are
in the same block after time T.

For Kingman’'s coalescent, recall that
noopy L 2
E[Tn] = 3 (2) =2-=

b=2 n
which implies that E[Toc] = 2 and Too < 0o a.s.

Thus, Kingman's coalescent comes down from infinity.



Let b b

Ap= > <k)>‘b,k

k=2
be the total rate of all mergers when the coalescent has b blocks.

It is not true that the A-coalescent comes down from infinity if
and only if 3272 >\b_1 < oo because 7, >\b_1 overestimates E[Ty,].

Let v, be the rate at which the number of blocks is decreasing:

b b
=) (k- 1)<k))\b,k~

k=2

Theorem (Schweinsberg, 2000): Suppose A({1}) = 0. Then
the A-coalescent comes down from infinity if and only if

@)
Z %—1 < 0.
b=2

The Beta(2 — o, a) coalescent comes down from infinity if and
only if a« > 1.



Random walk methods

For the Beta(2 — o, «)-coalescent with 1 < o < 2. Probability
that next merger causes the number of blocks to decrease by k
(Bertoin-Le Gall, 2006):

( b )/\b,kﬂ_ ol (k+1—a)

i k+1/ 2  TTR—-—a)(k+2)

b— 00

Let V1,V5,... be independent with
1

al (E+1— o) -1 .
r(2—a)r(k—+2) Ck ! E[VZ]_a—l'

P(Vi=k) =

Suppose we begin with n blocks at time zero.
Let 7, be the number of mergers before only one block remains.
Let X; be the number of blocks remaining after k£ mergers.

Use the approximation X, ~n — (V3 +---+ V3.).

If n and b are large, then P(X;, = b for some k) ~ o — 1.



Functions of the block counting process

Theorem: (Kersting, Schweinsberg, Wakolbinger, 2014): Let
1 < a < 2, and suppose f : (0,1] — R satisfies |f'(z)| < Cz ™7,
where vy <14 1/a. As n — oo

Tn—1
n—l/a< Z f( )—(a—l)n/olf(a:)d:c>:>2,

where Z has a stable law of index «.

Example: (Kersting, 2012): Note that

™n—1 Xk ™m—1 1 1 Tn—1 Xk l1-a
Lp~ ) )\—%al_(oz) Y X Y=n"%(a) Z < > :
k=0 "Xk k=0
Take f(z) = al(a)z1™® to get that if 1 < a < (1 +/5)/2, then
ala—1)MN(«)

n—(l—a—I—l/a)(Ln . Cn2—a) = 7

2 — «
where Z has a stable law of index «.



Additional Remarks

(Kersting, 2012): The total branch length L, has an asymptotic
stable law when a = (1 4+ v/5)/2, but L, — cn?~% converges to a
nondegenerate limit when (1 4++/5)/2 < a < 2.

(Dahmer, Kersting, Wakolbinger, 2014): The external branch
length L,, 1 has an asymptotic stable law forl <a<?2.
(Berestycki, Berestycki, Limic, 2012):

Lyp (2= (k+a-2)

> a.Ss.
Ln Mo — 1)k!

Theorem (Drmota, Iksanov, Mohle, and Ro6sler, 2007): For the
Bolthausen-Sznitman coalescent, as n — oo,

log n)? 0 log 1o
(logn)?(, _ On _ nloglogn =z
On logn (logn)2

where Z has a stable law of index 1.

See Basdevant and Golschmidt (2008) and Kersting, Pardo, and
Siri-Jegousse (2014) for asymptotics about L, ;.



Random recursive trees

Definition: A tree on n vertices labeled 1,...,n is called a re-
cursive tree if the root is labeled 1 and, for 2 < k < n, the labels
on the path from the root to k£ are increasing.

There are (n—1)! recursive trees. To construct a random recur-
sive tree, attach k£ to one of the previous k— 1 vertices uniformly

at random.

Cutting procedure (Meir and Moon, 1974): Pick an edge at
random, and delete it along with the subtree below it. What
remains is a random recursive tree on the new label set.



Connection with Bolthausen-Sznitman coalescent

Theorem (Goldschmidt and Martin, 2005): Cut each edge at
the time of an exponential(1) random variable, and add the labels
below the cut to the vertex above. The labels form a partition of
{1,...,n} which evolves as a Bolthausen-Sznitman coalescent.

Proof idea: Given /1 < --- < ¥, there are (k—2)! recursive trees

involving £o,...,¢;, and (n — k)! recursive trees on the remaining
vertices. The probability that ¢4,...,¢;, could merge is
(E=2)I(n—-k)!

1
k—2 n—k —
(n — 1)1 /O " (1 —x) dr = A, k-



Time for n blocks to merge into one

Theorem (Goldschmidt and Martin, 2005): Let T, be the time
required for n blocks in the Bolthausen-Sznitman coalescent to
merge into one. For all z € R,

—X

: - €
nII_>mOOP(Tn —loglogn < a:) =e€

Proof idea: The last cut must involve one of the edges attached
to the root. Because there are approximately

zn: LNlogn
kzzk_l

such edges, T, behaves like the maximum of logn exponential(1)
random variables. By extreme value theory, the mean is approx-
imately loglogn, and the asymptotic distribution is Gumbel.



Other Constructions

Abraham and Delmas (2013) gave a combinatorial construction
of Beta(3/2,1/2)-coalescent by pruning a random binary tree.

Abraham and Delmas (2015) constructed the Beta(2 — «, a)-
coalescent for 0 < a < 1/2 by pruning a stable Galton-Watson
tree with n leaves.

Preprints listed at web page of Helmut Pitters (not yet available):

e “Lifting linear preferential attachment trees vields the arcsine
coalescent”

e ‘Lifting random trees yields multiple merger coalescents”



