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Partitions

A partition of a set S is a collection of disjoint subsets Bi of S

such that ⋃
i

Bi = S.

The sets Bi are called blocks of the partition. Blocks of a parti-

tion of size 1 are called singletons.

If π is a partition, write i ∼π j if i and j are in the same block.

Let #π denote the number of blocks of the partition π.

P∞ = set of partitions of N.

Pn = set of partitions of {1, . . . , n}.

If π ∈ P∞, or π ∈ Pm with m > n, then Rnπ ∈ Pn is the restriction

of π to {1, . . . , n}, which means i ∼Rnπ j if and only if i ∼π j.

Example: π = {{1,3,4,7,8}, {2,5,9}, {6}}
R5π = {{1,3,4}, {2,5}}.



Exchangeable Random Partitions

If π ∈ P∞ and σ is a permutation of N, define σπ ∈ P∞ such that
σ(i) ∼σπ σ(j) if and only if i ∼π j.

If Π is a random partition of N, we say Π is exchangeable if
σΠ =d Π for all permutations σ of N.

Let ∆ =
{

(x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,
∞∑
i=1

xi ≤ 1
}

.

Paintbox (stick-breaking) construction: Let x = (x1, x2, . . .) ∈∆.
Divide [0,1] into subintervals of lengths x1, x2, . . . and 1−

∑∞
i=1 xi.

Let U1, U2, . . . be i.i.d. Uniform(0,1).

Define Π such that i ∼Π j if and only if Ui and Uj fall in the same
subinterval, other than the last interval of length 1−

∑∞
i=1 xi.

x1 x2 x3 1−
∑∞
i=1 xix xx x x x

U1 U2U3 U4 U5 U6

R6Π = {{1,3,4}, {2}, {5}, {6}}.



Given x ∈ ∆, let Px denote the distribution of the associated
paintbox partition.

Theorem (Kingman, 1978): Suppose Π is an exchangeable ran-
dom partition of N. Then there exists a probability measure µ

on ∆ such that

P (Π ∈ A) =
∫

∆
Px(A) µ(dx)

for all measurable subsets A of P∞. We call Π a µ-paintbox
partition.

Suppose B is a block of Π. Then

lim
n→∞n

−1
n∑
i=1

1{i∈B}

exists and is called the asymptotic frequency of B. The sequence
of ranked asymptotic frequencies of blocks has distribution µ.

Note: Every block of Π either is a singleton or has positive
asymptotic frequency.



Kingman’s n-Coalescent (Kingman, 1982)

Continuous-time Markov chain (Πn(t), t ≥ 0) taking values in Pn.

Πn(0) consists of n singletons.

A transition that involves merging two blocks of the partition

into one happens at rate 1. No other transitions are possible.

When there are k blocks, the distribution of the time until the

next merger is exponential with rate k(k − 1)/2. Then two ran-

domly chosen blocks merge.

Example: Πn(t) = {1}, {2}, {3}, {4}, {5} 0 ≤ t < τ1
Πn(t) = {1,3}, {2}, {4}, {5} τ1 ≤ t < τ2
Πn(t) = {1,3,5}, {2}, {4} τ2 ≤ t < τ3
Πn(t) = {1,3,5}, {2,4} τ3 ≤ t < τ4
Πn(t) = {1,2,3,4,5} τ4 ≤ t



Kingman’s Coalescent

Consistency: if m > n, then (RnΠm(t), t ≥ 0) and (Πn(t), t ≥ 0)

have the same law.

By Kolmogorov’s Extension Theorem, there is a continuous-time

Markov process (Π∞(t), t ≥ 0) with state space P∞ such that

(RnΠ∞(t), t ≥ 0) has the same law as (Πn(t), t ≥ 0) for all n.

The process (Π∞(t), t ≥ 0) is called Kingman’s coalescent.



Coalescents with multiple mergers (Λ-coalescents)

Pitman (1999), Sagitov (1999), Donnelly-Kurtz (1999).

Definition (Pitman, 1999): A coalescent with multiple mergers

is a P∞-valued process Π∞ = (Π∞(t), t ≥ 0) such that:

• Π∞(0) is the partition of N into singletons.

• For all n ∈ N, the process (RnΠ∞(t), t ≥ 0) is a continuous-

time Pn-valued Markov chain with the property that when

RnΠ∞(t) has b blocks, each k-tuple of blocks is merging to

form a single block at some fixed rate λb,k, and no other

transitions are possible.

{1}, {2}, {3}, {4} → {1,2,3}, {4} rate λ4,3

{1,2}, {3,6,7}, {4}, {5,8} → {1,2,3,4,6,7}, {5,8} rate λ4,3



Characterization of coalescents with multiple mergers

Theorem (Pitman, 1999): For any coalescent with multiple

mergers, we have

λb,k =
∫ 1

0
xk−2(1− x)b−k Λ(dx)

for some finite measure Λ on [0,1].

Definition: We call a process with these rates a Λ-coalescent.

Note: When Λ = δ0, we get Kingman’s coalescent because

(λb,2 = 1, λb,k = 0 for k > 2).



Proof of Pitman’s Theorem

Let (Π∞(t), t ≥ 0) be a coalescent with multiple mergers.

Let T be the time when {1} and {2} merge.

Let B1, B2, . . . be the blocks of Π∞(T−), ordered by their smallest
elements. Assume for now #Π∞(T−) =∞.

Let ξi = 1 if Bi merges with {1} and {2} at time T , and ξi = 0
otherwise. Then (ξi)

∞
i=3 is exchangeable. Thus, by de Finetti’s

Theorem, there exists a probability measure Λ′ such that

P (ξ3 = · · · = ξk = 1, ξk+1 = · · · = ξb = 0) =
∫ 1

0
xk−2(1−x)b−k Λ′(dx).

We have P (ξ3 = · · · = ξk = 1, ξk+1 = · · · = ξb = 0) = λb,k/λ2,2.

Let Λ = λ2,2Λ′. Then

λb,k =
∫ 1

0
xk−2(1− x)b−k Λ(dx).

If #Π∞(T−) <∞, then condition #Π∞(T−) ≥ k and apply Kol-
mogorov’s Extension Theorem.



Exchangeable Coalescent Processes

(Schweinsberg (2000), Möhle and Sagitov (2001),

Bertoin and Le Gall (2003))

One can consider also coalescents that allow for simultaneous

multiple mergers.

Let T be the time when integers 1 and 2 merge, and let B1, B2, . . .

be the blocks of Π(T−).

Let Ψ be the partition of {3,4, . . . } such that i ∼Ψ j if and only

if Bi and Bj are in the same block of Π(T ). Then Ψ is an

exchangeable random partition, thus a Ξ′-paintbox partition for

some probability measure Ξ′ on ∆.

Let Ξ = λ2,2Ξ′, where λ2,2 is the rate at which the integers 1

and 2 merge. The associated coalescent process is called the

Ξ-coalescent.



Biological motivation

Coalescent processes describe the genealogy of a sample of size
n from a population. Here i ∼Πn(t) j if the ith and jth individuals
in the sample have the same ancestor at time −t.
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Applications of coalescents with multiple mergers:

• Large family sizes (many lineages trace back to individual
with large number of offspring).

• Natural selection (many lineages trace back to individual who
got a beneficial mutation).



Questions of Interest

1. Given a model for how a population evolves, determine what

coalescent process describes its genealogy.

2. Understand the distribution of the time Tn for n blocks to

merge into one. Note that Tn is the height of the tree, and

the time back to the most recent common ancestor (MRCA).

3. Understand the distribution of the total tree length Ln when

the coalescent starts with n blocks. This should be approxi-

mately proportional to the number of mutations in a sample

of size n from a population.

4. Understand the distribution of Ln,k, the total length of the

branches that are ancestors of k of the n leaves of the tree.

This should be approximately proportional to the number of

mutations that appear on k out of n individuals in the pop-

ulation. Note: Ln,1 is the total length of external branches.



Poisson process construction of Λ-coalescents

Let π be a partition of N into blocks B1, B2, . . . . Let p ∈ (0,1].
A p-merger of π is obtained as follows:

• Let ξ1, ξ2, . . . be i.i.d. with P (ξi = 1) = p, P (ξi = 0) = 1− p.

• Merge the blocks Bi such that ξi = 1.

Write Λ = aδ0 + Λ0, where Λ0({0}) = 0. Transitions:

• Each pair of blocks merges at rate a.

• Construct a Poisson point process on [0,∞) × (0,1] with
intensity dt × p−2Λ0(dp). If (t, p) is a point of this Poisson
process, then an p-merger occurs at time t.

0
0

1

t

u

uu

u

u u uuu uu uuu
u

When there are b blocks, λb,k =
∫ 1

0
pk−2(1− p)b−k Λ(dp).



Large family sizes (Schweinsberg, 2003)

Consider a population in which the number of offspring ξ of an
individual satisfies P (ξ ≥ k) ∼ Ck−α, where 1 ≤ α < 2.

If there are N individuals, this reproduction event produces a
p-merger with p ≥ x if and only if

ξ

ξ +N
≥ x ⇐⇒ ξ ≥

x

1− x
·N

The probability of such a family in a given generation is

NP

(
ξ ≥

x

1− x
·N

)
∼ NC

(
x

1− x
·N

)−α
.

The rate of such mergers in the Beta(2− α, α)-coalescent is

1

Γ(α)Γ(2− α)

∫ 1

x
p−1−α(1− p)α−1 dp =

1

αΓ(α)Γ(2− α)

(
x

1− x

)−α
.

If α ≥ 2, Kingman’s coalescent describes the genealogy.



Populations undergoing selection

In some standard population models involving natural selection,

the genealogy is given by the Bolthausen-Sznitman coalescent,

the Λ-coalescent in which Λ is the Beta(1,1) distribution.

The Bolthausen-Sznitman coalescent describes the genealogy if,

when the population has size N , events in which an individual

acquires a beneficial mutation and quickly produces at least Nx

descendants happen at a rate proportional to x−1.

Non-rigorous work: Brunet, Derrida, Mueller, Munier (2007)
Desai, Walczak, Fisher (2013)
Neher, Hallatschek (2013)

Rigorous work: Berestycki, Berestycki, Schweinsberg (2013)
Schweinsberg (2015)



Basic properties of Λ-coalescents (Pitman, 1999)

Suppose (Π∞(t), t ≥ 0) is a Λ-coalescent. Then:

1. Jump-hold property: let T = inf{t : Π∞(t) 6= Π∞(0)}. If∫ 1

0
p−2 Λ(dp) <∞,

then P (T > 0) = 1. Otherwise, P (T = 0) = 1.

2. Let X1(t) ≥ X2(t) ≥ . . . be the asymptotic frequencies of the

blocks of the exchangeable random partition Π∞(t). The

coalescent has proper frequencies if P (
∑∞
k=1Xk(t) = 1) = 1

for all t > 0. This is equivalent to:

P ({1} is a block of Π∞(t)) = 0 for all t > 0.

Thus, the Λ-coalescent has proper frequencies if and only if∫ 1

0
p−1 Λ(dp) =∞.



Coming Down from Infinity

Definition: Suppose Π∞ is a Λ-coalescent. If #Π∞(t) = ∞ for
all t > 0, then we say the process stays infinite. If #Π∞(t) <∞
for all t > 0, then we say the process comes down from infinity.

Theorem (Pitman, 1999): If Λ({1}) = 0, then the Λ-coalescent
either comes down from infinity almost surely or stays infinite
almost surely.

Let Tn be the first time that 1, . . . , n are in the same block. Then
0 < T2 ≤ T3 ≤ . . . ↑ T∞. If T∞ <∞, then all positive integers are
in the same block after time T∞.

For Kingman’s coalescent, recall that

E[Tn] =
n∑

b=2

(b
2

)−1
= 2−

2

n
,

which implies that E[T∞] = 2 and T∞ <∞ a.s.

Thus, Kingman’s coalescent comes down from infinity.



Let
λb =

b∑
k=2

(b
k

)
λb,k

be the total rate of all mergers when the coalescent has b blocks.

It is not true that the Λ-coalescent comes down from infinity if
and only if

∑∞
b=2 λ

−1
b <∞ because

∑n
b=2 λ

−1
b overestimates E[Tn].

Let γb be the rate at which the number of blocks is decreasing:

γb =
b∑

k=2

(k − 1)
(b
k

)
λb,k.

Theorem (Schweinsberg, 2000): Suppose Λ({1}) = 0. Then
the Λ-coalescent comes down from infinity if and only if

∞∑
b=2

γ−1
b <∞.

The Beta(2 − α, α) coalescent comes down from infinity if and
only if α > 1.



Random walk methods

For the Beta(2 − α, α)-coalescent with 1 ≤ α < 2. Probability
that next merger causes the number of blocks to decrease by k

(Bertoin-Le Gall, 2006):

lim
b→∞

( b

k + 1

)λb,k+1

λb
=

αΓ(k + 1− α)

Γ(2− α)Γ(k + 2)
.

Let V1, V2, . . . be independent with

P (Vi = k) =
αΓ(k + 1− α)

Γ(2− α)Γ(k + 2)
∼ Ck−α−1, E[Vi] =

1

α− 1
.

Suppose we begin with n blocks at time zero.
Let τn be the number of mergers before only one block remains.
Let Xk be the number of blocks remaining after k mergers.

Use the approximation Xk ≈ n− (V1 + · · ·+ Vk).

If n and b are large, then P (Xk = b for some k) ≈ α− 1.



Functions of the block counting process

Theorem: (Kersting, Schweinsberg, Wakolbinger, 2014): Let

1 < α < 2, and suppose f : (0,1] → R satisfies |f ′(x)| ≤ Cx−γ,

where γ < 1 + 1/α. As n→∞:

n−1/α
( τn−1∑
k=0

f

(
Xk
n

)
− (α− 1)n

∫ 1

0
f(x) dx

)
⇒ Z,

where Z has a stable law of index α.

Example: (Kersting, 2012): Note that

Ln ≈
τn−1∑
k=0

Xk
λXk

≈ αΓ(α)
τn−1∑
k=0

X1−α
k = n1−ααΓ(α)

τn−1∑
k=0

(
Xk
n

)1−α
.

Take f(x) = αΓ(α)x1−α to get that if 1 < α < (1 +
√

5)/2, then

n−(1−α+1/α)(Ln − cn2−α)⇒ Z, c =
α(α− 1)Γ(α)

2− α
where Z has a stable law of index α.



Additional Remarks

(Kersting, 2012): The total branch length Ln has an asymptotic
stable law when α = (1 +

√
5)/2, but Ln− cn2−α converges to a

nondegenerate limit when (1 +
√

5)/2 < α < 2.

(Dahmer, Kersting, Wakolbinger, 2014): The external branch
length Ln,1 has an asymptotic stable law for 1 < α < 2.

(Berestycki, Berestycki, Limic, 2012):

Ln,k

Ln
→

(2− α)Γ(k + α− 2)

Γ(α− 1)k!
a.s.

Theorem (Drmota, Iksanov, Möhle, and Rösler, 2007): For the
Bolthausen-Sznitman coalescent, as n→∞,

(logn)2

θn

(
Ln −

θn

logn
−
n log logn

(logn)2

)
⇒ Z,

where Z has a stable law of index 1.

See Basdevant and Golschmidt (2008) and Kersting, Pardo, and
Siri-Jegousse (2014) for asymptotics about Ln,k.



Random recursive trees

Definition: A tree on n vertices labeled 1, . . . , n is called a re-
cursive tree if the root is labeled 1 and, for 2 ≤ k ≤ n, the labels
on the path from the root to k are increasing.

There are (n−1)! recursive trees. To construct a random recur-
sive tree, attach k to one of the previous k−1 vertices uniformly
at random.
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Cutting procedure (Meir and Moon, 1974): Pick an edge at
random, and delete it along with the subtree below it. What
remains is a random recursive tree on the new label set.



Connection with Bolthausen-Sznitman coalescent

Theorem (Goldschmidt and Martin, 2005): Cut each edge at
the time of an exponential(1) random variable, and add the labels
below the cut to the vertex above. The labels form a partition of
{1, . . . , n} which evolves as a Bolthausen-Sznitman coalescent.
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Proof idea: Given `1 < · · · < `k, there are (k−2)! recursive trees
involving `2, . . . , `k and (n− k)! recursive trees on the remaining
vertices. The probability that `1, . . . , `k could merge is

(k − 2)!(n− k)!

(n− 1)!
=
∫ 1

0
xk−2(1− x)n−k dx = λn,k.



Time for n blocks to merge into one

Theorem (Goldschmidt and Martin, 2005): Let Tn be the time

required for n blocks in the Bolthausen-Sznitman coalescent to

merge into one. For all x ∈ R,

lim
n→∞P

(
Tn − log logn ≤ x

)
= e−e

−x
.

Proof idea: The last cut must involve one of the edges attached

to the root. Because there are approximately

n∑
k=2

1

k − 1
≈ logn

such edges, Tn behaves like the maximum of logn exponential(1)

random variables. By extreme value theory, the mean is approx-

imately log logn, and the asymptotic distribution is Gumbel.



Other Constructions

Abraham and Delmas (2013) gave a combinatorial construction

of Beta(3/2,1/2)-coalescent by pruning a random binary tree.

Abraham and Delmas (2015) constructed the Beta(2 − α, α)-

coalescent for 0 < α ≤ 1/2 by pruning a stable Galton-Watson

tree with n leaves.

Preprints listed at web page of Helmut Pitters (not yet available):

• “Lifting linear preferential attachment trees yields the arcsine

coalescent”

• “Lifting random trees yields multiple merger coalescents”


