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CB-PROCESSES.

CB-processes may be thought of as the continuous (in time and
space) analogues of classical Galton-Watson processes.
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CB-PROCESSES.

A continuous-state branching process (or CB-process) is a
non-negative valued strong Markov process with probabilities Px
such that for any x, y ≥ 0, Px+y is equal in law to the convolution of Px
and Py, which is the branching property.

In particular,

Ex

[
e−λXt

]
= exp{−xut(λ)}, for λ ≥ 0,

for some function ut(λ).
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The function ut(λ) is determined by the integral equation

ut(λ) = λ−
∫ t

0
ψ(us(λ))ds

where ψ (branching mechanism of X) satisfies the Lévy-Khintchine
formula

ψ(λ) = −aλ+ γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
µ(dx),

where a ∈ R, γ ≥ 0 and µ is a σ-finite measure such that∫
(0,∞)

(
x ∧ x2)µ(dx) <∞.
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MULTI-TYPE CB-PROCESSES.

Multi-type Galton-Watson process

Features
I Infinite countable number of

types (N).
I Continuous time.
I Vector in [0,∞)N.
I Branching property
I with local and non-local

branching mechanism.
I

〈f , µ〉 :=
∑
i≥1

f (i)µ(i).
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MULTI-TYPE CB-PROCESS

A multi-type continuous-state branching process is a [0,∞)N-valued
strong Markov process X = (Xt : t ≥ 0) with probabilities
{Pµ, µ ∈M(N)} that satisfies the branching property:

Eµ+ν [e−〈f ,Xt〉] = Eµ[e−〈f ,Xt〉]Eν [e−〈f ,Xt〉].

In particular,

Eµ[e−〈f ,Xt〉] = exp {−〈Vtf , µ〉} , µ ∈M(N), f ∈ B+(N),

where, for i ∈ N,

Vtf (i) = f (i)−
∫ t

0

[
ψ(i,Vsf (i)) + φ(i,Vsf )

]
ds, t ≥ 0.
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BRANCHING MECHANISMS
Local mechanism ψ : N× [0,∞)→ R.

ψ(i, z) = b(i)z + c(i)z2 +

∫ ∞
0

(e−zu − 1 + zu)`(i,du), i ∈ N, z ≥ 0,

where b ∈ B(N), c ∈ B+(N) and, for each i ∈ N, (u ∧ u2)`(i,du) is a
bounded kernel from N to (0,∞).

Non-local mechanism φ : N× B+(N)→ R.

φ(i, f ) = −β(i)
[

d(i)〈f , πi〉+

∫ ∞
0

(1− e−u〈f , πi〉)n(i,du)

]
, i ∈ N, f ∈ B+(N)

Intuitively, X(i) evolves, in part from a local contribution which is
that of a CB with mechanism ψ(i, z), but also from a non-local
contribution from other types. The mechanism φ(i, ·) dictates how
this occurs. Each type i ∈ N seeds an infinitesimally small mass
continuously at rate β(i)d(i)πi(j) on to sites j 6= i (recall πi(i) = 0,
i ∈ N). Moreover, it seeds an amount of mass u > 0 at rate β(i)n(i,du)
to sites j 6= i in proportion given by πi(j).
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EXTINCTION EVENTS

Local extinction at a finite number of sites A ⊂ N,

LA := { lim
t→∞
〈1A,Xt〉 = 0},

Global extinction
E := { lim

t→∞
〈1,Xt〉 = 0}.

Functional equation
Let define the vector w(i) = − log Pδi(E), i ∈ N. Then w is a
non-negative solution to

ψ(i,w(i)) + φ(i,w) = 0, i ∈ N. (F. root)
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LINEAR SEMIGROUP

Define the linear semigroup

M(t)ij := Eδi [Xt(j)], t ≥ 0,

and suppose that M is irreducible. (for any i, j ∈ N, there exists t > 0
such that Mij(t) > 0). Let

Λ = sup
{
λ ≥ −∞ :

∫ ∞
0

eλtM(t)ijdt <∞
}
,

be the spectral radius of M.



Introduction MCB Extinction events Open problems

LOCAL EXTINCTION DICHOTOMY

Fix µ ∈M(N) such that sup{n : µ(n) > 0} <∞. Moreover, suppose
that

sup
i∈N

∫ ∞
1

(x log x)`(i,dx) + sup
i∈N

∫ ∞
1

(x log x)n(i,dx) <∞, (xlogx)

holds.
(i) For any finite number of states A ⊆ N, Pµ(LA) = 1 if

and only if Λ ≥ 0.
(ii) The vector vA(i) = − log Pδi(LA), i ∈ N is a solution for

ψ(i, vA(i)) + φ(i, vA) = 0, i ∈ N.
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OPEN PROBLEMS

1. By analogy with GWP, under (xlogx) condition we would expect
that if Λ < 0, the value −Λ would characterized the growth rate of
any other type.
Conjecture exp {Λt}Xi(t) converges a.s. to a non-trivial limit Wi as
t→∞.

2. If the number of types is finite, then −Λ would be also the growth
rate of the total mass and

exp {Λt} 〈1,Xt〉 →
∑
i∈E

Wi.

If the number of types is infinite maybe this is not the case. So, an
interesting question is how are the global and local growth rates
related with each other?
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OPEN PROBLEMS
Global extinction versus global absorption. In the classical
CB-process theory, absorption is the event defined as
{exist t > 0 : Xt = 0}. Let denote by px and qx the extinction and
absorption probabilities started at x. If ψ(∞) =∞, then
px = exp {−xη}, where η is the biggest root of ψ.

Moreover
qx = px1{∫∞ ψ(u)−1du<∞}.
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OPEN PROBLEMS

3. Analyse the possible roots of

ψ(i,w(i)) + φ(i,w) = 0, i ∈ N.

4. How does the global extinction event occur?
a) Does it occur as a result of mass limiting zero but remaining

positive all time?
b) Does it occur when mass disappears at finite time (absorption)?

5. What happens with the local extinction event? The irreducibility
property will ensure that the mass in all the states will experience the
same behaviour (all will be as in case a) or all will be as in case b)).
Relations between local absorption and global absorption?
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OPEN QUESTION

6. What would it change if we don’t have irreducibility? What would
we need to add in order to development this theory? If the matrix
restricted to a communication class is positive definite, we could
obtain its spectral radius. How is the asymptotic behaviour of the
process?
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